Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(12): 14198-14209, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38559915

RESUMO

In this work, a novel, green, and atom-efficient method for the synthesis of tetrahydro-ß-carboline derivatives using electrochemistry (EC) in deep eutectic solvents (DESs) was reported. The EC reaction conditions were optimized to achieve the highest yield. The experimental design was also optimized to perform the reaction in a two-step, one-pot reaction, thereby the time, workup procedure, and solvents needed were all reduced. The new approach achieved our strategy as EC served to decrease the time of reaction, eliminate the use of hazardous catalysts, and lower the energy required for the synthesis of the targeted compounds. On the other side, DESs were used as catalysts, in situ electrolytes, and noninflammable green solvents. The scope of the reaction was investigated using different aromatic aldehydes. Finally, the scalability of the reaction was investigated using a gram-scale reaction that afforded the product in an excellent yield.

2.
Sci Rep ; 14(1): 6175, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485748

RESUMO

Our main goal was to design and synthesize novel lomefloxacin derivatives that inhibit the topoisomerase II enzyme, leading to potent anticancer activity. Lomefloxacin derivatives substituted at position 3 and 7 were synthesized and screened for cytotoxic activity utilizing 60 different human cancer cell lines. Furthermore, compounds 3a,b,c,e that revealed potent broad-spectrum anticancer activity (with mean percent GI more than 47%) were further evaluated using five dose concentrations and calculating the GI50. Compound 3e was then evaluated for cell cycle analysis and demonstrated cell cycle arrest at the G2-M phase. Moreover, the mechanism of action was determined by determining the topoisomerase inhibitory activity and the molecular modeling study. Compounds 3a,b,c,e showed broad spectrum anticancer activity. Lomefloxacin derivative 5f showed selective cytotoxic activity against melanoma SK-MEL-5 cell line. Compound 3e demonstrated comparable topoisomerase II inhibition to doxorubicin with IC50 of 0.98 µM.


Assuntos
Antineoplásicos , Fluoroquinolonas , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Relação Dose-Resposta a Droga
3.
World J Microbiol Biotechnol ; 38(11): 187, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35972564

RESUMO

Ciprofloxacin (CIP) and levofloxacin (LEV), widely used fluoroquinolone antibiotics, are often found in sewage from the sewage treatment plants and marine environment. In this study, CIP and LEV biodegrading bacterial consortia were obtained from industrial wastewater. Microorganisms in these consortia were identified as Acinetobacter baumannii (A. baumannii), Klebsiella pneumoniae (K. pneumoniae) and Elizabethkingia miricola (E. miricola). The impacts of the critical operating parameters on the elimination of CIP and LEV by bacterial consortia have been investigated and optimized to achieve the maximum levels of CIP and LEV biodegradation. Using liquid chromatography with tandem mass spectrometry (LC-MS-MS), possible degradation pathways for CIP and LEV were suggested by analyzing the intermediate degradation products. The role of the enzymes fluoroquinolone-acetylating aminoglycoside (6'-N-acetyltransferase) and cytochrome P450 (CYP450) in the breakdown of fluoroquinolones (FQs) was investigated as well. According to our findings, various biodegradation mechanisms have been suggested, including cleavage of piperazine ring, substitution of F atom, hydroxylation, decarboxylation, and acetylation, as the main biotransformation reactions. This study discovers the ability of non-reported bacterial strains to biodegrade both CIP and LEV as a sole carbon source, providing new insights into the biodegradation of CIP and LEV.


Assuntos
Acinetobacter baumannii , Fluoroquinolonas , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias , Ciprofloxacina , Flavobacteriaceae , Klebsiella pneumoniae , Levofloxacino , Esgotos , Águas Residuárias
4.
Bioorg Chem ; 83: 262-276, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30391699

RESUMO

AIM: Design and synthesis of novel nalidixic acid derivatives of potent anticancer and topoisomerase II inhibitory activities were our major aim. MATERIALS & METHODS: All the newly synthesized nalidixic acid derivatives were submitted to the National Cancer Institute (NCI), Bethesda, USA and were accepted for single dose screening. Further investigation via IC50 determination of the most potent compound 6a against K-562 and SR leukemia cell lines. Finally, the topoisomerase II inhibitory activity, the cell cycle analysis and molecular docking of 6a were performed in order to identify the possible mechanism of the anticancer activity. RESULTS: Compound 6a showed interesting selectivity against leukemia especially K-562 and SR subpanels with IC50 35.29 µM and 13.85 µM respectively. Moreover, compound 6a revealed potent topoisomerase IIα and topoisomerase IIß inhibitory activity compared with known topoisomerase inhibitors such as doxorubicin and topotecan with IC50 1.30 µM and 0.017 µM respectively. Cell cycle analysis indicated that compound 6a induced cell cycle arrest at G2-M phase leading to inhibition of cell proliferation and apoptosis. Molecular modeling demonstrated that the potent topoisomerase inhibitory activity of 6a was due to the interaction with the topoisomerase II enzyme through coordinate bonding with the magnesium ion Mg2+, hydrogen bonding with Asp 545 and arene cation interaction with His 759.


Assuntos
Antineoplásicos/farmacologia , Ácido Nalidíxico/análogos & derivados , Ácido Nalidíxico/farmacologia , Inibidores da Topoisomerase II/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Domínio Catalítico , Linhagem Celular Tumoral , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/metabolismo , Relação Dose-Resposta a Droga , Desenho de Fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Ácido Nalidíxico/síntese química , Ácido Nalidíxico/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/química , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Ligação Proteica , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/metabolismo
5.
Anticancer Agents Med Chem ; 18(5): 747-756, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29366427

RESUMO

BACKGROUND: 4-Substitutedaminoquinazoline scaffolds were reported to possess potent cytotoxic and EGFR inhibitory activity such as gefitinib (Iressa), erlotinib (Tarceva) and tandutinib. OBJECTIVE: Synthesis of novel 4-substitutedaminothieno[2,3-d]pyrimidine derivatives as bioisosters of 4-substitutedaminoquinazoline derivatives with potential cytotoxic and EGFR inhibitory activity. METHODS: Novel 4-substitutedaminothieno[2,3-d]pyrimidine derivatives 4a-i and 5a-c were synthesized via reacting corresponding 4-chlorothieno[2,3-d]pyrimidine derivatives 3a-c with N-methylpiperazine, morpholine, N-phenylpiperazine or 1,3-propanediamine. Six compounds (2a, 4d, 4e, 5a-c) were selected by the National Cancer Institute (USA) for evaluating their cytotoxic activity using 60 different human tumor cell lines using a single dose (10-5 Molar). The rest of the synthesized compounds (2b, 2c, 3a-c, 4a-c and 4f-i) were subjected to screening against T47D breast cancer cell line using a single dose (10-5 Molar) at Pharmacology lab., Cancer biology lab., Egyptian National Institute. Moreover, compounds 2a and 4b-e were subjected to further evaluation by IC50 determination. Finally, the inhibition of epidermal growth factor receptor (EGFR) was then investigated for the most active compounds 2a and 4d. RESULTS: Compounds 2a and 4b-e showed significant cytotoxic activity. Compound 2a was more potent than doxorubicin against lung cancer cell line A549 with IC50 = 13.40 µM and comparable activity against MCF7. Compound 4d exhibited more potent activity than Doxorubicin against prostate PC3 (IC50 = 14.13 µM) while showed comparable activity against MCF7 and T47D. CONCLUSION: 4-Substitutedaminothieno[2,3-d]pyrimidine is a promising backbone for the design and synthesis of potent cytotoxic leads.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...